Frequency encoding: an alternative to common entropy encoding techniques used in lossless data
compression

Christopher W. Chunick
Draft, August 05, 2013

Abstract

There are currently only a small number of entropy encoding techniques in use today to generate a prefix code that
reduces the redundancy of a message being transmitted. I am introducing a new technique that creates a codeword to

be used in encoding and decoding of information specifically but not limited to the area of lossless data compression an
telecommunications. The new encoding method is a variant of range encoding [1] that involves sorted frequencies of
symbols instead of probabilities to determine the outputted prefix code.

The Frequency Encoding Algorithm

The algorithm can be applied to a message or string of symbols as long as the adaptive or static frequencies of all
symbols or previously appearing symbols are available. A message using binary storage, referred to as M, will be used
to verify the algorithm. The start placeholder, sp, is the leftmost placeholder, the finish placeholder being fp, and width
of the placeholder range will be referred to respectively as w = (sp-fp+1) and range as r. The range that determines the
code to output will be the difference of a bottom and a top of the width, referred to as b and t with b always required to
be less than t, and r =t - b. Frequencies of each symbol in this example will be referred to as fO and f1 with total of all
frequencies being tf. The sorted symbols from lowest to highest will be referred to as sO and s1. The example will start
with a total width of 16 placeholders (2*16 possibilities), a message of 10 bytes in length, 2 symbols (c and d), a
bottom value of 0, a top value of 65535, and a range of 65535 with zero always being quantitative.

w=10
b=0
t=2"w-1
r=t-b

m = cccddccecce

To encode the message ‘cccddcccee’ the frequency of each symbol is required:

SymbolFrequency

c fO0=8
d f1=2
tf=f0+f1

The frequencies are sorted from lowest to highest:

Sorted SymbolFrequency
sO d fl
sl C 2

[2] entropy = -1(((2/10)*(log(2/10)/log(2))+(8/10)*(log(8/10)/10g(2))))=0.7219 bits/byte

The proposed message of 10 bytes requires at least 7.219 bits of information storage to encode. Frequency encoding
does not use fractions so there is precision loss which directly affects how close to entropy that the algorithm can reach.

To encode the first symbol, replace the symbol with the sorted symbol, f1 becomes s0. The total frequency is 10 which
gives a probability of P(sx) = sx/tf. Starting from the leftmost placeholder, check to see if the total frequency is less thar
the range of the width.

b =0000000000000000
t=1111111111111111
sp = 16 (16th placeholder)
fp = 16 (16th placeholder)
w=sp-fp+1=1
r=t-b=1

If the total frequency does not fit within the range continue to move the finish placeholder over one to increase the rangg
until tf < (r+1).

b =0000000000000000
t=1111111111111111
sp = 16 (16th placeholder)
fp = 13 (13th placeholder)
w=sp-fp+1=4

tf <(r=t-b+1=16)

To encode the symbol split the range up by the frequencies of s0. The first symbol is c, using s1 as a reference only the

bottom of the range needs to change, if the symbol was sO then the top changes and the bottom stays the same.

b(w) = b(w) + s0 = 0100
t(w) = 1111

b =0100000000
t=1111111111

The new total range is now: r =t - b = 57343, continue to the next symbol using the next width that fits the total

frequency. The table below illustrates each symbol as it is encoded and the final output code.

Symbol Sort | Frq [w | r(w) | t(w) | b(w) | formula t(w) | b(w) | r(w) | Range | Top Bot
cccddeecce | S1 8 4 15 15 0 b(w)=b(w)+s0 15 2 13 57343 | 65535 8192
ceeddeccce | S1 |8 |4 [13 |15 |2 b(w)=b(w)+s0 | 15 4 11 | 49151 | 65535 | 16384
cceddeccee | S1 8 4 11 15 4 b(w)=b(w)+s0 15 6 9 40959 | 65535 24576
cceddeccee | SO 2 5 19 31 12 t(w)=b(w)+s0-1 | 13 12 1 4095 | 28671 24576
cceddeccee | SO 2 8 15 111 96 t(w)=b(w)+s0-1 | 97 96 1 511 25087 24576

cceddeccee | Sl 8 11 | 20 783 768 | b(w)=b(w)+s0 783 770 13 447 25087 24640

cceddeecee | S1 8 11|13 783 770 | b(w)=b(w)+s0 783 772 11 383 25087 24704

cceddecece | S1 8 11|11 783 772 | b(w)=b(w)+s0 783 774 | 9 319 25087 24768

cceddeecee | S1 8 12 | 19 1567 | 1548 | b(w)=b(w)+s0 1567 | 1550 | 17 287 25087 24800

cceddeccee | S1 8 12 | 19 1567 | 1550 | b(w)=b(w)+s0 1567 | 1552 | 15 255 25087 24832

Encoding the particular message of 10 bytes only requires 2 bytes of storage or 12 bits, a savings of 8 bytes. Any bit
beyond the width is superfluous and can be discarded. The bottom set of bits can be stored and used as the code to
decode the message, minus the superfluous bits. The final binary code stored is “011000010000” . Decoding the
message requires following the same steps as encoding and comparing the standard formula b(w)=b(w)+s0 to the same
width of the outputted code. If it is lower than the code, then sl is the original input, otherwise it is s0. Knowing this
information you can continue along the same process as above while decoding the message.

Conclusion

Frequency Encoding provides a new entropy encoding algorithm that removes division and the need for irrational
numbers from the process. Reducing the operations to additions, subtractions, and binary shifts could be useful in not
requiring superscalar processors to encode and decode digital transmissions in the future. This example is limited to a
binary set of symbols and further investigation is required for a larger set of symbols.

References
[1] G. N. N. Martin Presented in March 1979 to the Video & Data Recording Conference,

IBM UK Scientific Center held in Southampton July 24-27 1979. "Range encoding: an algorithm for removing redundancy
from a digitised message."

[2] Shannon, Claude E. (July/October 1948). "A Mathematical Theory of Communication". Bell System Technical
Journal 27 (3): 379-423.

